Ultrasonic acoustic health monitoring of ball bearings using neural network pattern classification of power spectral density
نویسندگان
چکیده
This thesis presents a generic passive non-contact based acoustic health monitoring approach using ultrasonic acoustic emissions (UAE) to facilitate classification of bearing health via neural networks. This generic approach is applied to classifying the operating condition of conventional ball bearings. The acoustic emission signals used in this study are in the ultrasonic range (20-120 kHz), which is significantly higher than the majority of the research in this area thus far. A direct benefit of working in this frequency range is the inherent directionality of the microphones capable of measurement in this range, which becomes particularly useful when operating in environments with low signal-tonoise ratios. Using the UAE power spectrum signature, it is possible to pose the health monitoring problem as a multi-class classification problem, and make use of a multi-layer artificial neural network (ANN) to classify the UAE signature. One major problem limiting the usefulness of ANN's for failure classification is the need for large quantities of training data. Artificial training data, based on statistical properties of a significantly smaller experimental data set is created using the combination of a normal distribution and a coordinate transformation. The artificial training data provides a sufficient sized data set to train the neural network, as well as overcome the curse of dimensionality. The combination of the artificial training methods and ultrasonic frequency range being used results in an approach generic enough to suggest that this particular method is applicable to a variety of systems and components where persistent UAE exist.
منابع مشابه
Combining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)
Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...
متن کاملIntelligent Health Evaluation Method of Slewing Bearing Adopting Multiple Types of Signals from Monitoring System
Slewing bearing, which is widely applied in tank, excavator and wind turbine, is a critical component of rotational machine. Standard procedure for bearing life calculation and condition assessment was established in general rolling bearings, nevertheless, relatively less literatures, in regard to the health condition assessment of slewing bearing, were published in past. Real time health condi...
متن کاملA Real-Time Electroencephalography Classification in Emotion Assessment Based on Synthetic Statistical-Frequency Feature Extraction and Feature Selection
Purpose: To assess three main emotions (happy, sad and calm) by various classifiers, using appropriate feature extraction and feature selection. Materials and Methods: In this study a combination of Power Spectral Density and a series of statistical features are proposed as statistical-frequency features. Next, a feature selection method from pattern recognition (PR) Tools is presented to e...
متن کاملA Statistical Pattern Recognition Framework for Noiserecognition in an Intelligent Noise Monitoring System
INTRODUCTION Actual noise monitoring systems have the shortcoming that although the intensity , duration, and time of occurrence of noises can be recorded, their source often cannot be identiied. Such information would be particularly useful when multiple noise sources are possible. This has led to research directed toward providing an \intelligent" noise monitoring system (Fig. 1) able to dist...
متن کاملDamage detection and structural health monitoring of ST-37 plate using smart materials and signal processing by artificial neural networks
Structural health monitoring (SHM) systems operate online and test different materials using ultrasonic guided waves and piezoelectric smart materials. These systems are permanently installed on the structures and display information on the monitor screen. The user informs the engineers of the existing damage after observing signal loss which appears after damage is caused. In this paper health...
متن کامل